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The article establishes a correlation beween the solutions of boundary problems of 
classical and generalized heat conduction, and also between the solutions of prob- 
lems of various sections of the thermomechanics of deformed solids. 

Detailed investigation of the processes connected with heat transfer requires considera- 
tion of more-complex laws of heat conduction than Fourier's law. This, in particular, is 
necessary for avoiding the paradox of infinite speed of propagation of heat [I, 2]. The 
simplest generalization of the classical equation of heat conduction eliminating this para- 
dox is the hyperbolic equation [3] 

kV 2 0 - c 0 - ~ o c ~  = - - w - - : o w "  (i) 

It is a consequence of the law of conservation of energy and of the law of heat conduction 
in the following form: 

q + ~0q = - -  kv O. (2) 

I f  we take  i n t o  account  the  dependence of the  f r e e  energy on the h i s t o r y  of change of 
the temperature field, and of the heat flux on the history of change of the temperature 
gradient, we obtain an even more complex equation [4, 5]. In this case the law of heat con- 
duction is written as follows: 

t 

q = .[ K (t - -  ~) VO (T) dE, 
0 

( 3 )  

and the equation of heat conduction has the form 

f a 
O. (4) 

o J ( Ot ! 

It should be noted that Eq. (4) can be reduced to Eq. (l) if the relaxation functions are 

C(t) = c, K(t) = k{1--exp(- - tTol )} .  (5) 

Many au thor s  d e a l t  wi th  the  s o l u t i o n  of the  boundary problems of g e n e r a l i z e d  hea t  conduc t i on  
and t h e r m o e l a s t i c i t y .  A d e t a i l e d  b i b l i o g r a p h y  i s  con t a ined  in  [6, 7] .  The au tho r s  of [8 -10] ,  
worked out  a f a i r l y  g e n e r a l  method of s o l v i n g  a c e r t a i n  c l a s s  of such problems,  and Koro l ' kov  
and Pupin [11] sugges ted  an appara tus  of s p e c i a l  f u n c t i o n s  which i s  ve ry  u s e f u l  in  the  t r a n s i -  
t i o n  from Laplace  t r an s fo r m  to the  o r i g i n a l s  i n  problems of g e n e r a l i z e d  hea t  conduc t ion .  

Le t  us examine some boundary problems f o r  Eq. (4) .  Assume t h a t  0 i n s i d e  the  r e g i o n  
bounded by the  s u r f a c e  O s a t i s f i e s  Eq. (4 ) ,  and on the  s u r f a c e  the  boundary c o n d i t i o n s  of 
one of three types apply: 

Olo = f(t),  q . n [ o  = g(t), q - n  + HO]o = h(t). 

We assume zero initial conditions. Using the integral Laplace transform, we obtain from 
(3), (4) the following equations in the image space: 

(6) 
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q ;  = - -  pK v (p) V@; (p), (7) 

#Cp  (p) 0 v (p) - -  pKp (p) V~O; (p) - -  wv (P) = 0. 

In  t h a t  c a s e  t h e  b o u n d a r y  c o n d i t i o n s  assume t h e  form 

O;[o = [p' qp'n[o'= g~, qv "n + HOp[o = hp. (8) 

We note that the classical law and equation of heat conduction after the Laplace transform 
are written as follows: 

qv (p) = -- koVOv (p), 

pco@~ (p) -- kov~op (p) -- wp (p) = O. 
(9) 

If we compare (7) and (9) we can easily see that the solution of the boundary problem for 
Eqs. (7) can be obtained from the solution of the boundary problem for Eqs. (9) if we re- 
place in the latter co by pCp(p) and ko by pKp(p). 

Consequently, we use the procedure of constructing the solution of the boundary problem 
of the generalized theory of heat conduction if the solution of the corresponding problem 
for the classical equation of heat conduction is known. The known solution has to be sub- 
jected to a Laplace transform, in it Co has to be replaced by pCD(p) , and ko by PKD(P) , and 
from the obtained transform the original has to be found. It shbuld be noted that-this 
method of constructing a solution may be used for finding the exact as well as an approxi- 
mate solution. 

The system of equations of symmetric thermoelasticity, which is based on the law of 
heat conduction (2), has the form [6] 

9V2U + (~t + ~) VV" u - -  v O o V ~  + X = pu ,  

kV2~ - -  *omOo~ - -  m O o #  - -  ~:o'V V . u  - -  v V . u  = - -  O o  ! ('ro~ + w).  

(i0) 

It can easily be seen that here we have a change of parameters that converts, in the space 
of the transforms, the solution of the boundary problem of classical bound thermoelasticity 
into the sQlution of the boundary problem of generalized thermoelasticity. In this case, 
in the known solution of the classical problem after the Laplace transform, ko has to be 
replaced by k(l + pTo)-*~ This, of course, also applies to the theory of asymmetric ther- 
moelasticity [12], where such a change also establishes a correlation between the solutions. 

It is known that in the space of Laplace transforms there exists a correlation between 
the solutions of the theory of symmetric elasticity and viscoelasticity [13]. Sm• [14] 
found a change of parameters establishing a correlation between the solutions of the gen- 
eralized asymmetric thermoviscoelasticity and classical bound thermoelasticity of Kosser's 
medium. 

Thus, the above-explained method of constructing the solution is of a fairly general 
nature and makes it possible to use the large stock of known solutions of boundary problems 
of the classical theory. Of course, such a way of constructing the solution is not always 
optimal. If the established correlation is to be used, the problem has to be reduced with 
the aid of a partial solution to a problem with zero initial conditions. 

In addition to solving actual problems, the above correlation between the solutions 
may also be used for investigating theoretical problems. In particular, with its aid the 
potentials of a number of sections of the thermomechanics of deformed solids may be con- 
structed. For instance, the results obtained by different methods in [15, 16] may be easily 
substantiated by the existence of the above correlation between the solutions, and the po- 
tentials of the equation of heat conduction with memory were constructed in [17], in fact, 
by using this correlation. 

The mentioned correlation between the solutions of problems of various sections of 
thermomechanics establishes a correspondence between them in the space of the Laplace trans- 
forms. An analogous correlation in the theory of viscoelasticity is established by the 
correspondence principle [13, 18]. However, this general correlation between the solutions 
is considerably simplified in some cases and may be expressed as the correlation between the 
solutions in be space of the originals (quasistatic problem of viscoelasticity, the problem 
of steady-state harmonic viscoelastic oscillations [18]). 
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In analogy with this, a correlation can be established in some cases directly between 
the solutions of the generalized and the classical problem also in generalized thermome- 
chanics. We will examine problems of steady-state harmonic vibrations of the generalized 
asymmetric thermoelasticity. The volume V, bounded by the surface O, is acted ~pon by the 
forces, moments, and sources of heat release of the form 

X = Xoexp(--ist), Y= Yoexp(--ist), w = woexp(--ist), (11) 

and the  boundary  c o n d i t i o n s  on t he  s u r f a c e  0 e x p r e s s  an a n a l o g o u s  dependence  of  the  s p e c i -  
f i e d  v a l u e s  on t ime .  In  t h a t  c a s e  t he  p rob lem r e d u c e s  to  t h e  c o n s t r u c t i o n  of  the  s o l u t i o n  
of  the  sys tem o b t a i n e d  i n  [ 12 ] ,  wh ich ,  i n  a c c o r d a n c e  w i t h  the  a s s u m p t i o n  (1 1 ) ,  i s  w r i t t e n  
as follows: 

(tt + a)  VZUo + (~ - -  ~z + )~) VV" uo + 2c~V • Oo - -  vOoV6o + Xo = - -  pS2Uo, 

(? + 8) V%Oo + ('7 - -  s + ~) VV" o30 + 2aV X Uo - -  4aoo + Yo - -  - -  sH.  Oo, 

kV~Oo + imOos ( 1 -  is%)O o + ivs (1 - -  is%) V.U o = - - O o  I ( 1 -  is%)Wo. 

(12) 

However, the solution of the classical problem of steady-state harmonic oscillations of a 
thermoelastic Kosser's medium reduces to the construction of the solution of a system of 
the form 

(~ + a) V2Uo + (ta - -  cz + ;~) VV "Uo + 2czV• - -  vOoVeo + iXo  . . . .  ps2uo, 

(7 + s) V~Oo + (~, - -  e + 13) VV" % + 2cW • Uo - -  4CCOo -+- Yo = - -  s21" O3o, 

koV2~o + imOosOo + ivsV-Uo -- _ _  O01WO . 

(13) 

A comparison of systems (12) and (13) shows that to obtain the solution of Eqs. (12) it suf- 
fices to replace ko by k(l-- isTo) in the solution of system (13). 

As an example of utilizing the correlation between the solutions in this form, we will 
examine the complex potential of the problem of steady-state harmonic oscillations of clas- 
sical thermoelasticity. The potential of a simple layer in this case [19], accurate to the 
designations, has the form 

P (0 = {z (to). [A (R) E + VoVo  (R)I + Xo (to) vor (R)} ao, 
(14) 

Po (r) = f f {--  is% (ro).Vor (R) + %o (ro) �9 (R)} dO, 
0 

where 

1 
A (x) = - -  exp {iX'h}, 

2~l~x 

X M~ exp {ix%~}, (15) 
2z~ (2p~ + ~) x ,,=1 

r (x) -~ 

1 (x) - 

fi~koOox 

n 

"L 
2~ (2p~ + ~,) G x  ,~=i 

,~ ( 21~Ps2+ )~ ) L~exp {ix~n}, 

and X and Xo are the potential densities. Here the following notation is introduced: 
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1 

e = [(x - -  xoP + (y  - -  yo)~ + (z  - -  Zo)~; T ,  

0 0 V o : e x ~ §  0 - k e ~ - - ,  
Oxo ~ Ozo 

= _ _  = q ~ ) - l ,  

9 O ') 2 1 o 2 - -  1 

{Xo, ~/o, Zo} ~ O. 

(~6) 

Then q~ and n2 are the roots of the biquadratic equation 

kopS z + isO o Iv z ~- m (2F + ~)] + ipsZmOo 
~]a - -  ~12 -- O, (17 )  

(2p + ~) ko (2~ + ~) ko 

and 

is@) o 
.% _ [v2 -F m ( 2 9  -F X)], na - -  s 1 / ' ~  -~ .  ( 18 )  

The roots q: and q2 are chosen in such a way that 

Im (N1, Nz) > 0- (19) 

It is perfectly obvious that in accordance with what had been explained, expression (14) is 
the potential of a simple layer of the problem of steady-state oscillations of generalized 
thermoelasticity if Eq. (17) is replaced by the following equation: 

~ __ ~ isOo (I - -  iSTo) [~2 + m (2~ + ~)] + pks ~ ipS30o m ( 1 - -  is%) := O, (20) 
k (2~ + %) k (2~ + ~) 

the constant q~ is put equal to 

~l~ = isO~ (1 - -  iSTo) [v z _[_ m(D + X)], ( 2 1 )  
(~ + X) ko 

and the functions contained in (14) are replaced by 

r (x) = - 
"v ( 1  - -  i s % )  2 

2 ~  (2~ + %) kx ~ L~ exp {!xq~}, 
t ~  I 

re(x) - 
( 1 - - i s % )  ~ ( 2 
2~kOox ~]~ 

PsZ ) L~exp{ix~l~}. 

(22) 

The function A'(x) retains its form, and in the function ~(x) only the constants M n and qn 
change in accordance with the replacement of Eq. (17) by (20). In exactly the same way, 
on the basis of the classical potentials [19], we can construct another four potentials of 
the problem of steady-state harmonic oscillations of generalized thermoelasticity. 

NOTATION 

@ temperature; k, thermal conductivity; c, specific heat; w, heat release density; To, 
magnitude characterizing the speed of propagation of heat; q, heat flux vector; K, C, relaxa- 
tion functions; n, vector of the external normal to the surface O; p, parameter of Laplace 
transform; u, displacement vector; ~, vector of rotation; p, density of material; I, tensor 
characterizing inertial properties of the material in microrotation; v, magnitude character- 
izing the thermoelastic properties of the material; ~, X, a, y, E, B, elastic constants; 

= ~ - 0o)@o-:, relative deviation of the temperature from the initial one; E, unit tensor. 
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